

Instructor: Dr. Sarah Khankan

Email: skhankan@gmu.edu Office: Exploratory Hall 4219 Office Hours: T 10:30-11:30 and by appointment TA: Wafa Mahzari, email: wmahzari@masonlive.gmu.edu, TA Office Hours: M 1:30-3pm, Exploratory 4311

Credit Hours: 3

Text(s): Briggs and Cochran, Calculus - Early Transcendentals, 2nd Edition. (ISBN: 9780321947345)

Prerequisites: C or better in MATH 114 or MATH 116.

Broad purpose of the course: We will cover partial differentiation, multiple integrals, line and surface integrals, and three-dimensional analytic geometry.

Disability statement: If you are a student with a disability and you need academic accommodations, please see me and contact the Office of Disability Resources at 703.993.2474. All academic accommodations must be arranged through that office.

Tutoring Center: The Math Tutoring Center is located in the Johnson Center Room 344. Help is available on a walk-in basis. For hours of operation see http://math.gmu.edu/tutor-center.php University Honor Code: You are expected to follow the GMU Honor Code http://oai.gmu.edu/the-mason-honor-code/.

Exams:

- Exam 1: 10/02/2018
- Exam 2: 10/30/2018
- Final Exam: 12/13/2018, 7:30-10:15 am

Grade Distribution:

MyMathLab	15%
Quizzes	20%
Exam 1	20%
Exam 2	20%
Final Exam	25%

Letter Grade Distribution:

А	90 - 100%
В	80 - 89%
С	70 - 79%
D	60-69%
F	below 60%

+ or may be attached to the grade for *approximately* the upper or lower 2 points.

Homework: We will be using MyMathLab for online homework. MyMathLab Course ID: khankan04746

Weekly Quizzes: 10 minutes. During recitation. Similar to practice problems.

Course Policies:

- Exams are closed book, closed notes.
- No makeup exams will be given.
- Assignments: Students are expected to work independently. Discussion amongst students is encouraged, but when in doubt, direct your questions to the professor or tutor.
- No late assignments will be accepted under any circumstances.
- Attendance is expected.
- Students are responsible for all missed work, regardless of the reason for absence. It is also the absentee's responsibility to get all missing notes or materials.

Tentative Course Outline:

The weekly coverage might change as it depends on the progress of the class.

Week	Content	Sections covered
1 (08/28-08/30))	Vectors in the planeVectors in three dimensionsDot Products	11.1, 11.2, 11.3
2 (09/04-09/06))	Labor DayCross Products	11.4
3 (09/11-09/13))	Lines and Curves in spaceCalculus of vector-valued functionsMotion in space	11.5, 11.6, 11.7
4 (09/18-09/20))	Length of CurvesCurvature and Normal vectorsPlanes and Surfaces	11.8, 11.9, 12.1
5 (09/25-09/27))	Graphs and level curvesLimits and continuity	12.2, 12.3
6 (10/02-10/04)	EXAM 1Partial DerivativesThe chain rule	12.4, 12.5
7 (10/09-10/11)	Fall BreakDirectional derivatives and the Gradient	12.6
8 (10/16-10/18)	Maximum/Minimum problemsLagrange Multipliers (if time allows)	12.8, 12.9
9 (10/23-10/25)	 Double integrals over rectangular regions Double integrals over general regions Double integrals in polar coordinates 	13.1, 13.2, 13.3
10 (10/30-11/01)	 EXAM 2 Triple integrals Triple integrals in polar coodinates 	13.4, 13.5
11 (11/06-11/08)	Change in variable in multiple integralsVector fieldsLine integrals	13.7, 14.1, 14.2
12 (11/13-11/15)	Conservative vector fieldsGreen's theoremDivergence and Curl	14.3, 14.4, 14.5
13 (11/20-11/22)	Divergence and CurlSurface integralsThanksgiving Break	14.5, 14.6
14 (11/27-11/29)	Stoke's theoremDivergence theorem	14.7, 14.8
15 (12/04-12/06)	• Review	
12/13, 7:30-10:15 am	• Final Exam	